6 resultados para Kidney development

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphogenesis is the process by which the 3-dimensional structure of the developing embryo takes shape. We are studying xlcaax-1, a gene whose product can be used as a molecular marker for several morphogenetic events. We report here the cellular and subcellular localization of the xlcaax-1 protein during development of Xenopus laevis. Whole mount immunocytochemistry and immunoperoxidase staining of tissue sections showed that during development the xlcaax-1 protein accumulation was coincident with the differentiation of the epidermis, pronephros and mesonephros. In the pronephros and mesonephros the xlcaax-1 protein was localized to the basolateral membrane of differentiated tubule epithelial cells. Thus, the xlcaax-1 protein served as a marker for tubule formation and polarization during Xenopus kidney development. Xlcaax-1 may also be used as a marker for the functional differentiation of the epidermis and the epidermally derived portions of the lens and some cranial nerves. The xlcaax-1 protein was most abundant in kidney and immunogold EM analysis showed that the xlcaax-1 protein was highly enriched in the basal infoldings of the basolateral membrane of the epithelial cells in adult kidney distal tubules. The xlcaax-1 protein was also localized in other ion transporting epithelia. The localization pattern and preliminary functional assays of xlcaax-1 suggest that the protein may function in association with an ion transport channel or pump.^ Cell migration and cell-cell interactions play important roles in numerous processes during morphogenesis. One of these is the formation of the pronephric (wolffian) duct (PD), which connects the pronephros to the cloaca. It is currently accepted that in most amphibians the pronephric duct is formed by active migration of the pronephric duct rudiment (PDR) cells along a pre-determined pathway. However, there is evidence that in Xenopus, the PD may be formed entirely by in situ segregation of cells out of the lateral mesoderm. In this study, we showed, using PDR ablation and X. laevis - X. borealis chimeras, that PD elongation in Xenopus required both active cell migration and an induced recruitment of cells from the posterior lateral plate mesoderm. We also showed that PDR cell migration was limited to only a few stages during development and that this temporal control is due, at least in part, to changes in the competence of the PD pathway to support cell migration. In addition, our data suggested that an alkaline phosphatase (APase) adhesion gradient may be involved in determining this competence. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wilms tumor is a childhood tumor of the kidney arising from the undifferentiated metanephric mesenchyme. Tumorigenesis is attributed to a number of genetic and epigenetic alterations. In 20% of Wilms tumors, Wilms tumor gene 1 (WT1) undergoes inactivating homozygous mutations causing loss of function of the zinc finger transcription factor it encodes. It is hypothesized that mutations in WT1 result in dysregulation of downstream target genes, leading to aberrant kidney development and/or Wilms tumor. These downstream target genes are largely unknown, and identification is important for further understanding Wilms tumor development. Heatmap data of human Wilms tumor protein expression, generated by reverse phase protein assay analysis (RPPA), show significant correlation between WT1 mutation status and low PRKCα expression (p= 0.00013); additionally, p-PRKCα (S657) also shows decreased expression in these samples (p= 0.00373). These data suggest that the WT1 transcription factor regulates PRKCα expression, and that PRKCα plays a potential role in Wilms tumor tumorigenesis. We hypothesize that the WT1 transcription factor directly/indirectly regulates PRKCα and mutations occurring in WT1 lead to decreased expression of PRKCα. Prkcα and Wt1 have been shown to co-localize in E14.5 mesenchymal cells of the developing kidney. siRNA knockdown, in-vivo ablation, and tet-inducible expression of Wt1 each independently confirm regulation of Prkcα expression by Wt1 at both RNA and protein levels, and investigation into possible WT1 binding sites in PRKCα regulatory regions has identified multiple sites to be confirmed by luciferase reporter constructs. With the goal of identifying WT1 and PRKCα downstream targets, RPPA analysis of protein expression in mesenchymal cell culture, following lentiviral delivered shRNA knockdown of Wt1 and shRNA knockdown of Prkcα, will be carried out. Apart from Wilms tumor, WT1 also plays an important role in Acute Myeloid Leukemia (AML). WT1 mutation status has been implicated, controversially, as an independent poor-prognosis factor in leukemia, leading to decreased probability of overall survival, complete remission, and disease free survival. RPPA analysis of AML patient samples showed significant decreases in PRKCα/p-PRKCα protein expression in a subset of patients (Kornblau, personal communication); therefore, the possible role of WT1 and PRKCα in leukemia disease progression is an additional focus of this study. WT1 mutation analysis of diploid leukemia patient samples revealed two patients with mutations predicted to affect WT1 activity; of these two samples, only one corresponded to the low PRKCα expression cohort. Further characterization of the role of WT1 in AML, and further understanding of WT1 regulated PRKCα expression, will be gained following RPPA analysis of protein expression in HL60 leukemia cell lines with lentiviral delivered shRNA knockdown of WT1 and shRNA knockdown of PRKCα.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute kidney Injury (AKI) in hospitalized pediatric patients can be a significant event that can result in increased patient morbidity and mortality. The incidence of medication associated AKI is increasing in the pediatric population. Currently, there are no data to quantify the risks of developing AKI for various potentially nephrotoxic medications. The primary objective of this study was to determine the odds of nephrotoxic medication exposure in hospitalized pediatric patients with AKI as defined by the pediatric modified pRIFLE criteria. A retrospective case-control study was performed with patients that developed AKI, as defined by the pediatric pRIFLE criteria, as cases, and patients without AKI as controls that were matched by age category, gender, and disease state. Patients between 1 day and 18 years of age, admitted to a non-intensive care unit at Texas Children's Hospital for at least 3 days, and had at least 2 serum creatinine values drawn were included. Patient data was analyzed with Student's t test, Mann-Whitney U test, Chi square analysis, ANOVA, and conditional logistic regression. ^ Out of 1,660 patients identified for inclusion, 561 (33.8%) patients had AKI, and 357 cases were matched with 357 controls to become pairs. Of the cases, 441 were category 'R', 117 category 'I', 3 patients were category 'F', and no patient died. Cases with AKI were significantly younger than controls (p < 0.05). Significantly longer hospital length of stays, increased hospital costs, and exposure to more nephrotoxic medications for a longer period of time were characteristics of patients with AKI compared to patient without AKI. Patients with AKI had greater odds of exposure to one or more nephrotoxic medication than patients without AKI (OR 1.3, 95% CI 1.1–1.4, p < 0.05). Percent changes in estimated creatinine clearance (eCCl) from baseline were greatest with increased number of nephrotoxic medication exposures. ^ Exposure to potentially nephrotoxic medications may place pediatric patients at greater risk of acute kidney injury. Multiple nephrotoxic medication exposure may confer a greater risk of development of acute kidney injury, and result in increased hospital costs and patient morbidity. Due to the high percentage of patients that were exposed to potentially nephrotoxic medications, monitoring and medication selection strategies may need to be altered to prevent or minimize risk.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β-catenin/Lef/Tcf-mediated Wnt pathway is central to the developmental of all animals, stem cell renewal, and cancer progression. Prior studies in frogs and mice have indicated that the ligand Wnt-4 is essential for the mesenchyme to epithelial transition that generates tubules in the context of kidney organogenesis. More recently, Wnt-9b in mice, was likewise found to be required. Yet despite the importance of Wnt signals in renal development, the corresponding Frizzled receptor(s) and downstream signaling mechanim(s) are unclear. My work addresses these knowledge gaps using in vitro (Madin-Darby Canine Kidney cells) and in vivo (Xenopus laevis and zebrafish pronephros) tubulogenic kidney model systems. Employing established reporter constructs of Wnt/β-catenin pathway activity, I have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions. I have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/β-catenin pathway using β-Engrailed and dnTCF-4, constructs that suppress this pathway. I have further found that MDCK cells express the Frizzled-6 receptor, and that Wnt-4 forms a biochemical complex with Frizzled-6, yet does not appear to transduce Wnt-4's canonical signal. Additionally, I demonstrate that standard Hepatocyte Growth Factor (HGF)-mediated (non-physiologic) induction of MDCK tubulogenesis in collagen matrices is not altered by activation or suppression of β-catenin signaling activity; however, β-catenin signaling maintains cell survival in this in vitro system. Using a Wnt/β-catenin signaling reporter in Xenopus laevis, I detect β-catenin signaling activity in the early pronephric epithelial kidney tubules. By inhibiting the Wnt/β-catenin signaling pathway in both zebrafish and Xenopus , a significant loss of kidney tubulogenesis is observed with little or no effect on adjoining axis or somite development. This inhibition also leads to the appearance of severe edema that phenocopies embryos depleted for Wnt-4. Tubulogenic loss does not appear to be caused by increased cell death in the Xenopus pronephric field, but rather by lessened expression of tubule epithelium genes associated with cellular differentiation. Together, my results show that Wnt/β-catenin signaling is required for renal tubule development and that Wnt-4 is a strong candidate for activating this pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Kidney disease is a growing public health phenomenon in the U.S. and in the world. Downstream interventions, dialysis and renal transplants covered by Medicare's renal disease entitlement policy in those who are 65 years and over have been expensive treatments that have been not foolproof. The shortage of kidney donors in the U.S. has grown in the last two decades. Therefore study of upstream events in kidney disease development and progression is justified to prevent the rising prevalence of kidney disease. Previous studies have documented the biological route by which obesity can progress and accelerate kidney disease, but health services literature on quantifying the effects of overweight and obesity on economic outcomes in the context of renal disease were lacking. Objectives . The specific aims of this study were (1) to determine the likelihood of overweight and obesity in renal disease and in three specific adult renal disease sub-populations, hypertensive, diabetic and both hypertensive and diabetic (2) to determine the incremental health service use and spending in overweight and obese renal disease populations and (3) to determine who financed the cost of healthcare for renal disease in overweight and obese adult populations less than 65 years of age. Methods. This study was a retrospective cross-sectional study of renal disease cases pooled for years 2002 to 2009 from the Medical Expenditure Panel Survey. The likelihood of overweight and obesity was estimated using chi-square test. Negative binomial regression and generalized gamma model with log link were used to estimate healthcare utilization and healthcare expenditures for six health event categories. Payments by self/family, public and private insurance were described for overweight and obese kidney disease sub-populations. Results. The likelihood of overweight and obesity was 0.29 and 0.46 among renal disease and obesity was common in hypertensive and diabetic renal disease population. Among obese renal disease population, negative binomial regression estimates of healthcare utilization per person per year as compared to normal weight renal disease persons were significant for office-based provider visits and agency home health visits respectively (p=0.001; p=0.005). Among overweight kidney disease population health service use was significant for inpatient hospital discharges (p=0.027). Over years 2002 to 2009, overweight and obese renal disease sub-populations had 53% and 63% higher inpatient facility and doctor expenditures as compared to normal weight renal disease population and these result were statistically significant (p=0.007; p=0.026). Overweigh renal disease population had significant total expenses per person per year for office-based and outpatient associated care. Overweight and obese renal disease persons paid less from out-of-pocket overall compared to normal weight renal disease population. Medicare and Medicaid had the highest mean annual payments for obese renal disease persons, while mean annual payments per year were highest for private insurance among normal weight renal disease population. Conclusion. Overweight and obesity were common in those with acute and chronic kidney disease and resulted in higher healthcare spending and increased utilization of office-based providers, hospital inpatient department and agency home healthcare. Healthcare for overweight and obese renal disease persons younger than 65 years of age was financed more by private and public insurance and less by out of pocket payments. With the increasing epidemic of obesity in the U.S. and the aging of the baby boomer population, the findings of the present study have implications for public health and for greater dissemination of healthcare resources to prevent, manage and delay the onset of overweight and obesity that can progress and accelerate the course of the kidney disease.^